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1. Introduction 
Following early work by Simon (1954), a method of testing 

'the adequacy of certain a priori assumptions of non- experimental 
causal models Jas gained considerable acceptance among social 
investigators. This approach to empirical theory construction 
has been developed further by Blalock (1962, 1964), Alker (1965, 
1966), and Boudon (1968), among others, and is generally referred 
to as "Simon- Blalock causal modeling." 

Simon and others who have contributed to this approach to 
theory building have limited their interest almost exclusively 
to recursive -form linear structural models and have been con- 
cerned with implications of such models in so far as they are 
representations of "one -way" o non- reciprocal" causal rela- 
tions among sets of variables.' In his classic paper, Simon (1954) 
derives necessary and sufficient conditions (which can be empi- 
rically approximated) for specified structural coefficients in 
the three -equation recursive -form linear model to be zero. 
Assuming that the dependent variable in each structural equation 
is subject to change according to the causal laws postulated 
by the equation, he interprets his statistical results to be a 
test of causal relations represented in a recursive -form linear 
model. 

The purpose of the present paper is two -fold. First, after 
a review of Simon's work, we shall elucidate some of the inherent 
weaknesses of the recursive -form linear structural. model for the 
representation of causal processes and shall argue against its 
use, even when it seems an appropriate choice for such a repre- 
sentation. A case will be made for the employment of linear 
structural systems which are less restrictive than the recursive - 
form in two important respects. Specifically, we are interested 
in linear structural systems which (1) have the ability to repre- 
sent reciprocal causal relations and (2) require weaker restric- 
tions on the covariances of the disturbance terms than is required 
for the recursive -form system. Second, we shall derive correla- 
tional conditions which are both necessary and sufficient for 
specified structural coefficients to be zero in a type of linear 
structural model which is more general than the recursive -form in 
the two respects just mentioned. As does Simon for the recursive - 
form system, we shall *take our statistical results to be a test 
of causal relations in this more general structural model. 

Greatly simplifying Simon's paper (1954), we shall try to 
capture the most important implications of his efforts. In an 
earlier piece (1953 Simon formally develops the concepts of 
causality and the causal relation. Offering an implicit defini- 
tion of the causal relation as an asymmetrical relation between 
two variables, Simon points out that the temporal sequence of the 
variables is not the basis of the asymmetry which defines the 
causal relation. In fact, his implicit definition admits rela- 
tions where no temporal sequence even appears. He argues that 
such a definition corresponds more closely to the consensual scien- 
tific usage of the concept than does a definition which employs 
time sequence as the basis of the asymmetry between two variables. 
At the heart of Simon's notion of the causal relation is his con- 
cern with a 'production" or "influence" operation. A mechanistic 
relation exists between two variables whereby impulses from one 
variable influence behavior in the other. It is this influence 
operation which forms the basis of the asymmetry that defines the 
causal relation. For example: "a thrown rock produces a broken 
window" is a relationship which exhibits an operational relation 
providing the basis of an asymmetry between two variables. While 
a temporal sequence is certainly involved in such a relationship, 
it is not the sequence which forms the basis of the asymmetry. 

Yet, Hume argues (and. Simon agrees) that the only relation- 
ship we can observe between two variables is a "constant conjunc- 
tion" in the past (an association). Since an association is.all 
we are able to observe, it is impossible for us to establish a 
necessary connection or ontological relationship between a cause 
and an effect. Only in a tentative sense are we able to establish 
a causal relationship. Hence, it makes little sense to affirm 
that some variable is the "true" cause of some other variable. 
In our example, for instance, we could never demonstrate that a 
thrown rock realty causes a broken window. We can never dismiss 
the possibility that other variables exist which would "explain 
away" our causal relationship. Nor can we avoid the possibility 
that the analytic level chosen by another investigator to explain 
a given empirical process is different than the level have 
chosen -- we may choose a "microscopic" level of analysis, while 
someone else may choose a "macroscopic" level. Even a controlled 
experiment cannot demonstrate conclusively a "real' causal rela- 
tionship between two variables. 

However, it is possible to view the causal relation in a man- 
ner which does not violate Hume's argument. We may take a "sub- 
jective" view of the causal relation and argue that whether or 

not an empirical relationship is causal depends on the context in 
which we make our description. While it makes little sense to 
argue that some process is unconditionally causal, it is neverthe- 
less consistent with the Humean view that a relationship be 
called causal in a conditional sense. When we argue thaei.rela- 
tionship is causal, we are exhibiting a perception of (or hypo- 

thesis about) the empirical world where we have made, either expli- 
citly or implicitly, certain ceteris paribus assertions about 
other empirical relations. We are making causal statements about 
an abstraction of the real world, not about the real.world itself. 
For example, it is necessary to consider the empirical process we 
are interested in as practically isolated from the rest of the 
world. However, a truly isolated process is almost never encoun- 
tered in the real world r :r are many of the other ceteris paribus 
conditions which yield the context in which we call relationship 
causal. But, if we are willing to assume that these ceteris 

paribus conditions are satisfied ana confine our causal crip- 
ns to abstractions of the empirical world, then Hume's critique 

becomes irrelevant. 
It is for the above reasons that Simon restricts his formal 

definition of the causal relation to refer only to models of empi- 
rical processes rather than to the empirical processes tEemselves. 
Inspired by his implicit notion of the causal relation as an asym- 
metrical production operation, he formally defines the causal rela- 

tion within the context of a non- stochastic segmentable" system 
of linear non -homogeneous equations -- segmentable in the sense 
that the current predetermined variables are determined by equa- 
tions which do not contain any of the current endogenous variable. 
A paraphrase of Simon's formal definition of the direct causal 
relation, X causes Y, is: X directly causes Y if X 

appears as a predetermined variable in the equation for Y, when 
Y is currently endogenous in a segmentable system of linear non - 
homogeneous equations .5 This formal definition provides the basis 
for Simon's later paper (1954), to which we now turn our attention. 
However, before proceeding to our discussion, we shall digress to 
introduce an important preliminary to the remainder of this paper. 

The recursive -form linear structural model is that model in 

which the structural disturbances are independent of each other, 
and the matrix of coefficients of the endogenous variables has 
only zeros to one side of the main diagonal such that: 
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Ind G, so the gih equar6n there,if,onlyronelendo- 
genous variable, %, all the variables Y1,...,Y9_1 being pre- 
determined by equations preceding in the hierarchy, and X1,...,XK 
being predetermined for the entire model. Hence, an obvious pro- 
perty of such a system is that influences move only in one direc- 
tion: that is, from equations earlier in the hierarchy to those 
appearing later. Moreover, it San be shown that every equation 
in such a system is identified./ More will be said about the 

recursive -form structural system after we complete our discussion 
of Simon's contribution to theory building. 

While Simon has made an important contribution to the metho- 

dology of scientific inquiry simply on the basis of his formal 

definition of the causal relation, by no means is this the extent 
of his contribution. We shall now consider Simon's concern with 
the derivation of necessity and sufficiency conditions for the 

adequacy of specific three -variable causal models. 

In order to carry out his derivation, Simon employs a three - 
equation recursive -form linear structural model to represent the 
causal relations among a set of three variables. From a close 
examination of the properties óf system (1.1), it should be ob- 
vious that the recursive -form is segmentable and an appropriate 
choice the representation of causal relations as defined by 
Simon in his earlier piece (1953). The recursive -form linear 
structural model is a stochastic analogue of the non -stochastic 
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segmentable system employed by Simon in his development of the 
formal definition of the causal relation. Moreover, the direct 
causal relation, Yi causes Y-, is represented in the recur- 
sive -form linear model by the an-zero structural coefficient 
(i.e. 0). 

Assuming a system of three endogenous variables, each varia- 
ble being determined by a linear mechanism so that the model has 
three equations, Simon represents this situation as: 

Y1 + 612Y2 + 813Y3 ul 

(1.2) 
821Y1 + Y2 + 8231'3 u2 

+ ß32Y2 + Y3 = u3 

where the normalization rule ßi = 1 is used and where the u's 
are random disturbances with E(u1) = E(u2) E(u3) O. . However, 
(1.2) is not segmentable (or recursive) unless additional a priori, 
assumptions are made. As in (1.1), the matrix of coefficients 
of the endogenous variables (in this case the variables Y1, Y2, 
Y3) must be triangular and the covariances of the disturbances 
must be zero for the system to be recursive -form (this insures 
the identifiability of each equation in lieu of other information 
Simon assumes that Y7 is not causally dependent on or Y3, 

and Y2 is not causally dependent on Y3. This assertion amounts 
to an a priori substantive ordering of the three variables. Addi- 
tionally, restricting the covariances of the disturbances to be 
zero so that E(u1u2) E(ulu3) = E(u2u3) 0, yields the fol- 
lowing recursive -form system: 

Y1 ul 

(1.3) 
821Y1 

+ Y2 u2 

8311'1 + ß32Y2 + Y3 u3 

Given the assumed substantive ordering of the three varia- 
bles, the assumed independence of the disturbances; and assuming 
that the variables are measured from their respective means, 
Simon proves the following: if certain restrictions are placed 
on the set {021,031.032) (that is, certain combinations of the 
elements of this set are zero), then certain conditions in terms 
of zero -order correlations between various pairs of variables 
in the model hold, and conversely. Simon then deduces that if 
none of these correlational conditions holds, then all three 
structural coefficients 021, 031 032 are non -zero. 

Alternatively, we may look at the matter from a different 
perspective. It can be shown that the two restrictions placed 
on (1.3) -- that the matrix of coefficients is triangular and 
that the covariances of the disturbances are zero -- are jointly 

. 

necessary and sufficient to identify every equation in the model 
without having further information on the model. Moreover, each 
equation of (1.3) is just identified. Now, with additional 
restrictions on the set {821.03 } (that some elements of 
this set are zero), either the or the third equation (or 
both of these equations) becomes overidentified. Thus, upon 
observation of the population data, Simon's correlational condi- 
tions allow us to determine which one of the possible situations 
of overidentification (there are C? + C2 + Ci 7 possible 
situations) is consistent with the a priori just identifying 
restrictions on (1.3). If none of the overidentified conditions 
holds, then deduce that every equation is just identified. 

Perhaps the most important interpretation we can give to 
Simon's statistical results is that he provides a test of the 
existence of direct causal relations as formally defined in his 
earlier paper (1953). Since his correlational conditions tell 
us which specific structural coefficients are non -zero or zero, 
and since a non -zero structural coefficient defines a causal rela- 
tion, we can determine which specific causal relations hold among 
the variables in the model (assuming a priori, of course, that 
some of them do not hold). With reference to (1.3), we can sum- 
marize Simon's results as follows. where is the zero -order 
correlation coefficient between variables and Y : 

Given the priori restrictions on (1.3), then j 

1) 021 0, 031 O. 

P31 

0310. 
P21 P31 

2) 

3) 

$ 
32 

0 if and only if 

p32 

032 0 if and only if 

p32 
and P31 °21°32 

(or, equivalently. 
p31.2 

0). 

621 
031 f 0 if and only if 

P21 0. P31 p32 0, and P32 

(or. equivalently. 
p32.1 

0). 
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4) 621 
831 

0, 

P31 = 

5) B21 B32 

p21 P32 

6) 
831 832 

P31 P32 = 

632 0 if and only if 

'32 

B31 

p31 

if and only if 

if 

p21 O. 

and only if 

7) B21 
831 832 

0 if and only if 

p21 P31 P32 0. 

8) B21 0, 031 032 0 if and only if none of the 

correlational conditions (1) -(7) holds 

While Simon's conditions refer to population correlation 
coefficients, we can nevertheless approximate his conditions by 
employing sample correlation coefficients. However, it should be 
kept in mind that his results have utility only with respect to 
the a priori simplyfying assumptions of the model and the initial 
just restrictions on its equations. Consequently, any 
practical application of Simon's results to sample data must be 
done with a sensitivity to the possibility that some of the 
a priori assertions may not actually hold (of course, this warning 
could be given to the use of any statistical model). However, even 
though Simon's results refer only to formal statistical models of 
the real world, the application of his procedure- ad to ten- 
tative real world inferences. 

On heuristic grounds, Simon's work has appeal since it may 
be viewed as an attempt to explicate the assumptions and logical. 
processes that are usually involved in making causal inferences 
from correlational data. When we observe a non -zero correlation 
coefficient between two variables and we wish to make some causal 
inference from this association, we ordinarily introduce a third 
variable we have doubts whether the observed correlation is 

"genuine." This third variable may account for the observed zero- 
order correlation and render it "spurious." In order to investi- 
gate this possibility, we compute the partial correlation coeffi- 
cient between the original two variables. holding the third variable 
constant as a control. Comparing the computed partial correlation 
coefficient with the initial zero -order correlation coefficient, 
we attempt to make causal inferences. If the computed partial 
correlation coefficient is approximately zero, then we are apt to 
conclude either (1) that the third variable is an intervening 
variable, implying that the causal relationship between the ori- 
ginal two variables is mediated by the third variable; or (2) that 

the third variable causes both of the Original variables and thus 

accounts for the initially observed zero-order correlation. How- 

ever, this procedure cannot tell us the causal direction in (1), 
let alone distinguish between (1) and (2). 

We have seen above how, by moving to a formal representation 
of causal processes within the confines of the recursive -form, 
Simon makes clear what assumptions are necessary to distinguish 
between (1) and (2) and to determine the causal direction in (1). 

The correlational data alone do not allow us to decide among 
these possible conclusions. Not only does he point out the neces- 
sary assumptions, but his analysis also provides us with a set of 
correlational predictions that preserve the flavor of less rigorous 
causal investigations. The heuristic appeal of Simon's work, then, 
rests not so much on his ability to provide a test for causal 
theories embedded in a formal statistical model, but rather on 
his ability to use the algebraic relationships of the formal model 
to deduce a correlational test which maintains highly intuitive 
properties. 

II. The Present Problem 
We have seen that Simon's attempts to define formally the 

causal relation takes place exclusively within the confines of a 

recursive -form linear structural system of equations. While we 
find his approach to be useful and important, it has several sig- 

nificant limitations. In this section of the paper, we shall be 
concerned with the nature of these limitations. 

A. Reciprocal Causal Relations 
Since the basis of Simon's implicit definition of the causal 

relation is the notion of an asymmetrical production relation 
between two variables, and not the temporal sequence of the pair, 
his formal definition of the concept is not entirely adequate. 
The choice of the recursive -form linear structural model to play 
a role in the formal definition of the causal relation prevents, 
in 9_eneral, our consideration of reciprocal asymmetrical produc- 

re lations. If we employ Simon's formal definition of the 
causal relation, it is clear that the recursive -form structural 
model does not permit a variable Y4 to both cause and be caused 
by some other variable without the explicit introduction of 
temporal sequence into system by "lagging" one or the other 
of the two variables.l" This can easily be seen by noting that in 



the recursive -form linear structural model the matrix 
of coefficients of the endogenous variables must be tri- 
angular. (See (1.1)) Hence, if a structural coeffi- 
cient 0, then must be zero (or conversely). 

Although we would ague that temporal sequences ire pre- 
sent and ought to be explicitly included in the formal repre- 
sentations of such processes as symbiosis in biological sys- 
tems, interpersonal attitude influence in the husband -wife 
dyad, or the influence relationship between constituency and 
legislative representative in the formation of public policy, 
it is not these sequences which lead us to consider the pro- 
cesses as causal.ii If we are inclined to consider a process 
like symbiosis as a reciprocal causal process, in which we 
believe temporal sequence to be no more the basis for either 
of the two asymmetries than it is for the single asymmetry 
of our rock - window example. then Simon's approach to formali- 
zing the causal relation is inadequate for our purposes. 
When we think of a symbiotic relationship between two biolo- 
gical organisms, we are most concerned with the fact that 
each organism asymmetrically provides products necessary for 
the existence and development of the other. The gist of such 
a relation is one of reciprocal production or influence. The 
temporal sequences involved do not form the bases of the mu- 
tual asymmetries we are interested in; it is the existence 
of a situation in which benefit is reciprocally given and re- 
ceived by both organisms which performs this function. 

Of course, it can be argued that every causal rela- 
tion, reciprocal or not, involves temporal sequences 
to some extent, or otherwise no change could ever take 
place as a consequence of the relation. Thus, it might 
be inferred from this argument that temporal sequences 
should be explicitly included in the formal representa- 
tion of any process which we regard as causal. Yet, no 
matter how closely the concept of the causal relation 
may hang together in empirical situations with the con- 
cept of temporal sequence, these two principles are - 

cally independent.'4Simon does not argue that time is 
not involved in causal relations, but rather that the 
basis of the asymmetry of a causal relation is provided 
by the mechanistic or operational notion of production. 
Knowledge of the temporal sequence of two variables does 
not imply that a mechanistic relation holds between the 
pair. Hence, the concept of time should play no role 
whatsoever in either the development or the statement 
of a satisfactory formal definition of the causal rela- 
tion.l5 

However, as already mentioned, if we admit the pos- 
sibility of reciprocal causation, it is impossible to 
define formally the causal relation within the context 
of the recursive -form structural model without the expli- 

representation of temporal sequence. But, by the 
above argument, such an explicit representation would 
violate the logical independence of the causal relation 
and temporal sequence. Therefore. Simon's formal defi- 
nition actually precludes the notion of rec cau- 
sation, even though this notion is perfectly consistent 
with his implicit definition of the causal relation. 

In other words, we regard a reciprocal causal pro- 
cess as a process exhibiting two asymmetries, each of 
which satisfies Simon's conceptual notion of the causal 
relation. There is nothing contained in his implicit 
definition of the causal relation which excludes the 
possibility that two asymmetrical relations can hold 
between a pair of variables. Indeed, the concept of re- 
ciprocal causation does not in any way change or distort 
Simon's implicit definition of the causal relation. Fur- 
thermore, we feel quite comfortable with his implicit 
definition. The notion of reciprocal causation merely 
implies that two causal relations, rather than only one, 
are present between a pair of variables. We intend no 
additional meaning, either implicit or explicit, to be 
attached to this notion. 

Like Simon, we shall restrict our formal definition 
of the causal relation to refer only to a representational 
model. However, as we have seen in the preceding dis- 
cussion, the recursive -form linear structural system is 
inappropriate for our purposes (as is any segmentable 
system) if we desire to consider reciprocal causation. 
Since we desire to confine our interest in causal rela- 
tions to the domain of a structural model, it is clear 
that we must have at our disposal a structural model 
which has the ability to represent reciprocal causal re- 
lations. After a discussion of some of the additional 
problems of the recursive -form, we shall consider a type 
of linear structural model which meets our requirements. 

Restrictions on the Covariances of Disturbance 
Terms 

In addition to its inability to represent reciprocal 
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causal relations, the recursive -form linear structural system has 

another disadvantage: its restriction that the covariances of 

the disturbance terms are zero is a rather stringent a priori con- 

dition to impose upon models of many empirical processes. In 

practice, this restriction is usually not a consequence of the 

theory which gives rise to the particular structural model being 

considered. It is more likely to be either a consequence of the 

investigator's implicitly held ideas about some causal process 

being contained in the disturbance terms or a consequence of the 

desire for computational convenience. We generally regard the 

disturbances to be the net effects of many independently operating 

tiny influences that have been excluded from the structural parts 

of our equations. Therefore, when we assume that the disturbances 

of two equations are independent, we are implying that the omitted 

variables influencing the two equations have few elements in com- 

mon. Whether or not such an assumption is plausible may depend 

largely on the theoretical proximity of the mechanisms described 

by the two equations. For example, even if we were to consider 

attitude influence in the husband -wife dyad to be non -reciprocal, 

with the husband influencing his wife, but not conversely, it 

would probably be rather unreasonable for us to expect that the 

variables omitted from a stochastic two- equation formal descrip- 

tion of this process have no large number of elements in common. 

On the other hand, with respect to a stochastic two- equation eco- 

nomic model, where each equation describes widely separated, yet 

operationally linked, segments of some market, there is probably 

a greater likelihood that the excluded ariables affecting the 

two equations have few common elements. However, even in the 

latter example, we would probably be at a loss to give a theore- 

tically meaningful defense of the assertion that the disturbances 

are independent. 
Unfortunately, the restriction that the covariances of the 

disturbances are zero is-often made simply because it offers a 

gain in the ease of estimation of the structural parameters of 

an equation system with a triangular matrix of coefficients. This 

restriction is used to aid in the identification of individual 

equations in such a system, and helps to guarantee the consis- 

tency of ordinary least squares estimates." However, as indicated 

above, there is a good deal of risk associated with this restric- 

tion. Invoking this restriction becomes even more problematical 

if the only reason for doing so is the desire for computational 

convenience. This is not only due to the reasons already men- 

tioned, but also due to the critical relationship between this 

restriction And the identification of equations in systems with 
triangular coefficient matrices. 

The concept of an identified equation is generally defined 

in the econometric literature in terms equivalent to the following: 

a particular structure equation of a model is identified if that 

equation is the equation, among the entire set of structure 

equations compatible with the data, which is also compatible with 

the a priori restrictions imposed by the model that particular 

equation. (Essentially, an equation is identified if we have 

enough information to distinguish that equation from other equa- 

tions in a simultaneous system.) Using this definition, it can 

be shown that in a linear model only those structure equations 

which are linear of the true structure equations are 

the equations which satisfy the data. Moreover, an equation in 

such a model is identified if and only if no more than one of this 

set of linear combinations is consistent with the restrictions 

placed by the model on that particular equation 18 When the only 

priori information employed is that which specifies that certain 

variables are excluded from certain equations (i.e. that certain 

structural coefficients are zero), a necessary (but not sufficient) 

condition (order condition) for the identifiability of a parti- 

cular equation in a linear model of G equations is that at least 

G -1 of the variables that appear in the entire model be excluded 

priori from that equation. Using the same type of a priori ex- 

clusion information, a necessary and sufficient condition (rank 

condition) for the identifiability of a particular equation in a 

model of G linear equations is that it be possible to form at 

least one nonzero determinant of order G -1 from the matrix of 

coefficients constructed as follows: from the matrix of coeffi- 

cients of the entire system, delete every column which corres- 

ponds to a variable not excluded a priori from that equation, and 

delete the row of coefficients of-that equation. (It is presumed, 

however, that the reader is already familiar with the concept of 

identification and with the order and rank conditions for the 

identifiability of equations in linear models, since the discus- 

sion we have just offered is certainly not sufficient to prepare 

the reader for all of what follows in this paper. We intend the 

above discussion to be more of a reminder than anything else. If 

the reader is not familiar with the identification problem, he 

should consult one of the standard works: for example, Christ 

(1966), Johnston (1963), or Fisher (1966).) 

Even though it can be shown that every equation in a recur- 

sive -form linear structural system is identified, it is not uncom- 

mon for investigators to hold the belief that it is the triangu- 

larity of the coefficient matrix that is sufficient to identify 



all equations of the system. However, without additional a priori 

information, the triangularity of the coefficient matrix is 
ficient to identify any equation of the system except the first. 

To see this, consider the following two -equation model, where the 

normalization rule = -1 has been used: 

(2.1) -Y1 u1 

- Y2 = u2 

where we assume B12 0, and all that we assume about the dis- 
turbances, u u,, is that their variance -covariance matrix, 
call it E, is positive definite. While the coefficient matrix 
of (2.1), -call it B, is clearly triangular (since 0), 
nevertheless the second equation is not identified, smite it does 
not satisfy the order condition for identifiability (a necessary 
condition). However, the first equation is identified (trivially) 
since it satisfies the rank condition (a necessary and sufficient 
condition). 

Let us examine the two equations of (2.1) more closely. The 
matrix of coefficients of the entire system is 

(2.2) B 

For the first equation of (2.1), the matrix of coefficients rele- 
vant to the rank condition is found to be 

(2.3) ( -1) 

which has been formed by deleting from B: (a) every column not 
containing an a priori assumed zero in the first equation, and 
(b) the row of coefficients of the first equation. Now, for the 
first equation to satisfy the rank condition for identifiability, 
which is both necessary and sufficient, we must be able to form 
at least one non -zero determinant of order G -1, where G is 

the number of equations in the system, from matrix (2.3). Since 
the determinant of (2.3) is non -zero and of order G -1 1, the 
first equation of (2.1) is identified. 

However, by the order condition for identifiability, which 
is necessary, the second equation of (2.1) must a priori exclude 
at least 6 -1 of the variables that appear in system. For 
system (2.1), G -1 1. But, the second equation excludes zero 
of the variables appearing in the system. Hence, by the order 
condition, the second equation of (2.1) is not identified. 

It should be clear that the triangularity of the coeffi- 
cient matrix is insufficient to identify every equation of a linear 
model. Moreover, in order to identify the entire system, having 
only the knowledge that the coefficient matrix is triangular, it 
is both necessary and sufficient to make the additional restric- 
tion that the covariances of the disturbances are zero. (See 
Fisher (1966) for a proof of this.) 

Nor does the triangularity of the coefficient matrix give 
license to readily assume zero covariances of the disturbances, 
even though the hierarchical appearance of the system for some 
reason seems to tempt many investigators to make this assumption. 
The triangularity of the coefficient matrix only guarantees that 
perturbations in a disturbance directly influence only one of the 
endogeneous variables which appear in the same equation as that 
disturbance. The triangularity does not imply that movements in 
one disturbance are not associated with movements in other distur- 
bances. Indeed, if the triangularity did imply such independence 
among the disturbances, then the triangularity alone would suffice 
to identify every equation in the model. But, we already have 
seen that the triangularity alone is not sufficient to identify 
the entire system. Therefore, it is clear that the triangularity 
does not imply that the disturbances are independent of each other. 

Now, let us refer to our earlier example of attitude influ- 
ence in the husband -wife dyad. If we regard influence in this 
dyad as non -reciprocal, then we could certainly represent the pro- 
cess in a structural system with a triangular matrix of coeffi- 
cients. Yet, we already know that this triangularity does not 
alone suffice to identify the entire model. Let us suppose that 
we do not impose any a priori restrictions on the model other 
than those exclusion restrictions which led to the triangularity 
of the coefficient matrix. Since have no other information, 
it is clear that we must additionally assume that the covariances 
of the disturbances are zero, if the entire system is to be iden- 
tified. However, as indicated above, we cannot rely on the tri- 
angularity alone to permit us to assume that the disturbances are 
independent. 

Nor, are we really convinced that it is even desirable to 
make such an assertion about the disturbances. We have a strong 
feeling that such an assertion would have rather implausible im- 

plications. If we were to make this assertion, we would be imply- 
ing that the influences omitted from the structural parts of our 
equations, yet whose net effects are represented by the distur- 
bances, are essentially'different for each equation in the model. 
But, we are inclined to think that such an implication is not very 
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plausible for the husband -wife dyad. The only alternative left 

to us is to make the assertion about the disturbances out of a 
desire for computational convenience. However, given that we 
already believe that the assertion is probably inappropriate, it 

certainly would be foolish for us to choose this last alternative. 
Let us now examine how a situation of associated disturbances 

may affect the application of Simon's correlational testing pro- 
cedure. We shall use a set of computer simulated data to illus- 
trate such a situation. We are interested in assessing whether 
Simon's technique is sensitive to the "true" structural model, 
given a situation of associated disturbances. This illustration 
may shed light on the problems associated with making the 
assumption that the disturbances in a triangular system are inde- 
pendent when, in fact, they are not. 

The following structural system was usedto generate a sam- 
ple of 1000 cases of computer simulated data. 

-Y1 =0 
(2.4) 5Y1 - Y2 + u2 = 0 

6Y1 - Y3 + u3 = 0 

where u is a normally distribbuyted variable with E(u ) = 0 
and 1; and where u2 = u4, u u . While thelcoeffi- 
cient matrix of (2.4) is triangullar, have a situation where 
the disturbances of this system are not independent. If we were 
to assume the disturbances to be independent (although, in fact, 
they are not) and since 832 0, Simon's procedure would pre- 
dict that (2.4) is correct if and only if p21 f 

0, p31 0, 
p32 0, and p32.1 = 

Upon observation of the correlation coefficients computed 
from the simulated data generated by (2.4), we find that 

P32 1 
0 but rather is equal to 0.20. Therefore, Simon's me- 

fails to detect, the "true" structural model (2.4) which ge- 
nerated the data. This analysis suggests that to naively assume 
independence of structural disturbances may lead to serious con- 
sequences The application of Simon's procedure to such a misspe- 

cified model may produce quite misleading conclusions about the 

configuration of causal relations within the model. 

It should now be clear that we should be very cautious in 

choosing the recursive -form linear model to represent our theories, 
even when a triangular matrix of structural coefficients seems 
appropriate (i.e. when a complete a priori substantive ordering 
of the variables is theoretically justified). For unless we are 
willing to make the additional restriction (having no other iden- 
tifiability information at hand) that the covariances of the dis- 

turbances are zero -- a restriction that is most likely not a 

consequence of our theory, but more likely a consequence of impli- 
cit notions of isolability (ceteris paribus) or of a desire for 

computational ease -- the -form is not suitable. Indeed, 

even when we do think it suitable, its advantages usually just do 

not seem to outweigh its disadvantages. 
If, as a consequence of our abstraction of some empirical 

situation, we feel that our theory can be best represented in a 

structural. system with a triangular matrix of coefficients, it 

might be preferable to employ some structural system which re- 
quires weaker restrictions on the disturbance covariances, and 
avoid the recursive -form altogether, along with its high risks. 

More often than not, the theory which we intend to represent has 
implications only for the structural parts of our equations, and 

does not give rise to restrictions about the behavior of the dis- 

turbances. Fortunately, there do exist alternatives to the re- 

cursive -form for the representation of theories which inspire a 
triangular matrix of structural coefficients. One of these al- 

ternatives will be discussed in the following pages. Although 

the structural system which we shall discuss has some drawbacks, 
it will be seen to be superior to the recursive -form in a number 

of important respects. 

III. An Alternative Formal Definition of the Causal Relation 

A. Introductory Remarks 
In the preceding sections of this paper, we have focused on a 

number of issues associated with the concept of causality. A 
large part of our discussion was devoted to a critical examina- 
tion of Simon's approach to defining the causal relation. We saw 

that his approach is both useful and important, but that it is 

not entirely satisfactory. While we found his implicit notion of 

the causal relation (an asymmetrical influence or production rela- 

tionship between two variables) to have desirable properties, we 

found his formal definition of this concept (confined to the re- 

cursive -form) to be inadequate.for our purposes. In particular, 
we saw that if we admit the possibility of reciprocal causation, 

it is impossible to define formally the causal relation within 

the context of the recursive -form linear structural model without 
the explicit representation of temporal sequence. We argued, how- 

ever, that such an explicit representation would violate the lo- 

gical independence of the causal relation and temporal sequence. 



In addition, we found the recursive -form to be unsatisfactory 
due to its rather stringent restriction on the covariances of the 
disturbances. We saw that the recursive -form requires the assump- 
tion that the disturbance covariances are zero. We examined this 

assumption in some detail and pointed out its critical role in 
the identification of systems with triangular coefficient matrices. 
While it was seen that this assumption leads to a computationally 
convenient situation, it was also seen that high risks are involved 
when it is invoked. We saw that even when a system has a trian- 
gular coefficient matrix, to assume that the disturbances are in- 
dependent often has implausible implications and can lead to mis? 
leading causal conclusions (employing Simon'.s procedure). 

Therefore, since the recursive -form is unsatisfactory in a 
number of important respects, we must offer some alternative struc- 
tural'system in which we may adequately define the causal rela- 

tion and in which we may adequately represent causal theories. 
Such an alternative structural system must (1) have the ability 

to represent reciprocal causal relations, without requiring the 
explicit representation of temporal sequence and (2) allow the 

,possibility that disturbance terms are associated. We shall now 
proceed to the description of one such structural system which 
meets our requirements. After this description, we shall then be 
ready to offer our formal definition of the causal relation. 

B. The Simultaneous Linear Struaural Model 
Before we begin our description of the structural model in 

which we shall eventually imbed our notion of the causal relation, 
let us make a distinction between two types of variables. Let us 
call a variable which is determined in a particular model by other 
variables in that model an endogeneous variable. A variable which 
is not determined i that particular model will. be called a 
determined variable ?1. While we have occasionally used this dis- 
tinction in the preceding pages of this paper, we were not very 
precise about its meaning. However, for the model we are about 
to describe, this distinction plays a very crucial role. This 
role will become apparent in the course of our description. 

Let us assume that our model refers to characteristics of a 
population, and not to characteristics of some sample of that 
pulation. Let us further assure that we have knowledge of the 
values of the variables in that population, but not of the struc- 
tual coefficients. We shall treat these structural coefficients 
as unknowns. We shall also assume that the equations of our model 
are linear in the variables and u »known. Thus, we consider the 
following model of G equations: 

+ ... +y6ß16 +z1Y11 + ... 
+u1 

(3.1) 
Y Y + 0 +z + + 

k 6k 

which may be written in matrix form as: 

(3.2) TB + + U 0 

where 

(3.3) ! (Y1. is the 1.G Mow vector of endogenous 

variables in the model; 

(3.4) is the G matrix of coefficients 

ßG6 

(constant but unknown population parameters) of the 
endogenous variables; 

Z (z1,....zK) is the K row vector of predeter- 

mined variables in the model; 

1s.the K. G matrix coeffl- 

YlK . Y6K 
dents (constant but unknown population parameters) 
of the predetermined variables; 

and 

(3.7) U (ul,....uG) is the 1.G row vector of the random 

structural disturbances. 

Clearly, (3.2) contains as many equations as there are endogenous 
variables in the model. 

Assumption 3.1: B is nonsingular. 

Given that B is non -singular, postmultiplication of (3.2) 
by B-1 yields a`solution for the values of the G endogenous 
variables of the model in terms of the predetermined variables 
and the structural disturbances. Thus. we have: 
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(3.8) 

which is the reduced of (3.2) where 

(3.9) 11 the G matrix of reduced form coeffi- 

and 

(3.10) V is the matrix of reduced form 

It is obvious that each equation of the reduced form (3.8) has 
only one endogenous variable. 

Assumption 3.2: E(U) 0 

That is, each disturbance has zero expectation. 
Now, denote the variance- covariance matrix of the distur- 

bances by E. so that: E(U'U) = E, where the prime mark stands 
for transposition. . - 

Assumption 3.3: is positive definite. 

Assumption 3.4: The predetermined variables are linearly indepen- 

dent. 

Assumption 3.5: ETU) 0 

In other words, the predetermined variables are assumed to be 

independent of the disturbances. 
Let us now discuss some properties of the reduced form (3.8). 

Since the reduced form disturbances are linear combinations of 
the disturbances in (3.2), it can easily be shown that: 

(3.11) E(V) = 0; 

(3.12) E(V'V), call it 9, is positive definite; 

and 

(3.13) E(Z'V) 

Let us assume that the only kind of identifying restrictions 

on model (3.2) are exclusion restrictions -. Suppose that extra- 

neous a priori information indicates to us that certain of the 

y's. in number, are permitted to appear in the gth equation 

of (3.2), and the remainder of them, G -H in number, are ex- 

cluded. Suppose also that certain of the z's, J in number, 

are permitted to appear, and the remainder of them, K -J, are 

excluded. It is always possible for the y's to be numbered in 
such a way that yl are the ones that appear and 

y1 ....,y6 are excluded, and for the z's to be so numbered 

that appear and are excluded. Of course, 

this á priori information amounts to exact linear restrictions on 

the coefficients of (3.2) such that B H B G 3 +1 
. = O. Let us further assiid that each egOation9in 

(3.2) satisfies the rank condition for identifiability, which im-' 

plies that the order condition must also be satisfied, i.e. 

(G -H) + (K -J) > G -1 or K -J > H -1 for all g, 1 < g < G. More- 

over, let us employ the normalization rule -T for all g, 

1 < g < G. Hence, the of (3.2) may be written, 

after solving for y9, as: 

(3.14) = + + ug 

where y1 is a 1. H -1 row vector of the H -1 endogenous varia- 

bles other than included in the equation, so that: 

(3.15) 

is an H-1.1 column vector of the coefficients of xi, so 

that: 

ßg1(3.16) B" 

xi is a 1.J row vector of the J predetermined variables 

included in the equation: 

(3.17) 

is a J .1 column vector of the coefficients of zi: 

(3.18) ; 

and u 
9 

is the structural disturbance for the equation. 



C. Defining the Causal Relation 
Wold argues that a causal interpretation should not be given 

to the behavior relations represented by the structural coeffi- 
cients of model (3.2), i.e., the elements of B and (See Wold 
and Jureen (1953), Wald (1959, 1960), and Strotz and Wold (1960).). 
His argument is that such coefficients do not lend themselves to 
direct operative use in the sense of permitting a stimulus- response 
interpretation of the relations which they represent. In other 
words, Wold uses the concept of causality to correspond.with the 
usual laboratory meaning of the term. The basis for this use of 
the concept rests largely on the notion of control. Therefore, 
control in a system like (3.2) is a result of the operative signi- 
ficance of the behavior relations of the reduced form of (3.2), 
i.e., (3.8). This is so because an analogy to the direct control 
of the stimulus in the laboratory setting can only be gained by 
the assumed manipulability of the predetermined variables in (3.2), 
whose behavioral relations are represented in the reduced form. 
Wgld argues that the structural relations do not lend themselves 
to this interpretation since they contain interdependencies among 
the various endogenous variables in the model -- variables which 
are not subject to direct operational control. 

However, Wold's notion of causality is much narrower than 
ours. While we agree that direct operative significance in the 
experimental sense cannot be attributed to the structural rela- 
tions of (3.2), our view of causality does give causal meaning to 
these structural relations. Our concept of causality as an asym- 
metrical influence process includes more than just the notion of 
operational control. This should be apparent from earlier sections 
of this paper. We are also interested in giving causal signifi- 
cance to the asymmetric relations among the endogenous variables 
themselves. Relying only on the reduced form, as Wold would have 
it, tells us nothing about such structural relationships. When a 

structural model is constructed, it is not done so arbitrarily. 
It is formulated in an attempt to represent meaningful relations 
derived from theory and astute perception. The structural model 
is not just a set of arbitrary linear combinations of variables 
(See Goldberger (1964)). In fact, the structural model, not the 
reduced form, is the formulation which is inspired by the under- 
lying theory of the model. Therefore, we consider giving causal 
significance to the structural relations of (3.2) entirely 
appropriate. 

We are now ready to offer a formal definition of the causal 
relation. We shall do this in terms of the equation (3.14) 
of model (3.2). 

Definition 3.1: A variable is a direct cause of y if that 
variable is an element of either or 

Therefore, a variable which is a direct cause of y has a (non- 
zero) structural coefficient which is an element of9either 8 
or 

xThus, we have defined the direct causal relation within -a 
model which admits the possibility of reciprocal causal relations, 
without the explicit introduction of temporal sequence. However, 
it should be apparent that not all variables may be involved in 
reciprocal causal relationships; this clearly applies to the pre- 
determined variables in the model. While a predetermined variable 
may be the cause of some other variable(s) in the model, it cannot 
itself be caused by other variable in the model. That cer- 
tain variables are restricted from engaging in reciprocal causal 
relationships in a particular model should not, however, detract 
from the usefulness of Definition 3.1. It is certainly reasonable 
to suppose that, as a consequence of the theory which gives rise 
to a particular structural model, certain variables in that model 
are given as predetermined. Our critique of Simon's formal defi- 
nition of the causal relation should not be misconstrued. We did 
not argue that all variables in a given model should enjoy the 
possibility of taking part in reciprocal relationships. We merely 
pointed out that Simon's formal definition is inadequate because 
it does not permit the possibility of variable taking part in 
such a relationship. 

We also noted that to assume the independence of the struc- 
tural disturbances in a given model, as is required by the recur- 
sive -form, is an arbitrary decision usually not a consequence of 
the underlying theory and often having rather implausible impli- 
cations. A similar charge might be leveled at the assumption in 
(3.2) that the predetermined variables are independent of all dis- 
turbances in the model. Since we can-never actually observe the 
disturbances, we cannot obtain more observational information about 
the relationships between the disturbances and the variables we 
consider predetermined than we can about the relationships among 
the disturbances themselves. Yet, while both assumptions are ar- 
bitrary, one may be more arbitrary than the other. It is consi- 
derably more difficult to give theoretical justification for the 
assertion that variables determined in the same model have inde- 
pendent disturbances than for the assertion that variables deter- 
mined outside of the model are independent of the disturbances of 
variables determined within the model. Therefore, we feel some- 
what more comfortable assuming that predetermined variables are 
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independent of the model's disturbances than we feel assuming 

that the model's disturbances themselves are independent. 

Iv. A Test of Causal Theories 

A. Causal Theories 
Let us suppose that (3.2) represents some particular theory. 

In addition, let us require that all previous assumptions made 

about this system still hold. Suppose further that the structural 

relations in (3.2) are causal relations, as defined in Definition 
(3.1). We have already specified that certain variables are ex- 

cluded from certain equations in (3.2) -- that is, that certain 

elements of and /or are a priori assumed to be zero. Let 

us assume that such exclusion restrictions on the model are conse- 

quences of our theory. In other words, our theory indicates to 

us which y riables are, and which variables are not, direct causes 

of the endogeneous variable, for all g, 1 < g G. More- 

over, we have already assumed that the exclusion restrictions 

placed on (3.2) are sufficient to identify each equation of the 
model. 

However, we may not be certain that our a priori exclusion 

restrictions are correct with respect to the population. Our cau- 

sal theory, represented by (3.2), may not be appropriate. There- 

fore, it is desirable to have some statistical test of the exclu- 

sion restrictions on the equations of (3.2). Alternatively, we 

may interpret such a test to be a test of the causal relations 

postulated in (3.2). It should be obvious that we shall be unable 

to provide a separate test for each a priori assumption of (3.2). 

shall have to consider at least some of the assumptions of 

(3.2) to be correct without their being tested. Therefore, our 

statistical test of the a priori exclusion restrictions of (3.2) 

will be useful only if we are willing to assume that certain 

other assumptions of (3.2) are valid. In fact, it will be seen 

that not even every exclusion restriction on (3.2) will be tested. 

At-least some of these restrictions will have to be assumed to be 

correct. Hence, our statistical test of the causal relations of 

(3.2) will allow us to make only conditional statements about the 

adequacy of the model. But, this should not bother us. We have 

already argued, much earlier in this paper, that it makes little 

sense ever to state that a relationship is unconditionally causal. 

Even though a number of tests of identifying restrictions 

may be found in the econometric literature (for example, tests 

developed by Anderson and Rubin (1950) and by Basmann (1960); also 

see Christ (1966), Chapter X.), none of these tests has the heu- 

ristic appeal of the correlational test developed for the recur- 

sive -form by Simon. While it is clear that Simon's testing pro- 

cedure is inappropriate for non -recursive systems, it would be 

desirable to develop a test which has some of the intuitive cha- 

racteristics associated with his procedure. Particularly, it 

would be desirable to develop a correlational test which in some 

sense reflects the logical process associated with introducing 

control variables into a zero -order correlational relationship and 

examining the partial correlations as a test for "spuriousness." 

We earlier argued that Simon's procedure is appealing precisely 

because it reflects this logical process, even though the proce- 

dure was deduced from a formal statistical model. Therefore, it 

is hoped that the results of the derivation that follows will also 

reflect this process. 

B. Derivation of the Statistical Test 
Withoutloss of generality, let us assume that all variables 

in (3.2) have zero means. We still assume that we are referring 

to the population and not to a sample of that population. Employ- 

ing our normalization rule, we again consider the equation 

of (3.2): 

(4.1) 

Let 

(4.2) (zJ be the lx K -J row vector of the pre- 

determined variables excluded from the equation. 

Since is the lx J row vector of predetermined varia- 

bles included in the equation, we may write the reduced form 

of as: 

(4.3) 

where 

(4.4) is the Jx H -1 matrix of reduced form coefficients 
óf 

12 
is the K -Jx H -1 matrix of reduced form coeffi- 

cients of z2, 

yg zly + 

(4.5) 

and 

(4.6) is the 1x H -1 row vector of reduced form distur- 

binces for 

Now, let us define: 



(4.7) - 
12 

Solving (4.7) for we obtain: 

(4.8) 
Y1 + 

Substituting (4.8) into (4.1) for we have: 

(4.9) + + (u9 + 

Since the elements of are linear combinations of the 
original predetermined variables in (3.2), we have, using Assump- 
tion (3.5) and (3.13): 

(4.10) 

and 

(4.11) 

Therefore, we may consider the elements of to be predeter- 
mined variables. Let 

(4.12) be the 1 xG-H row vector of the 

G -H endogenous variables exc'uded from the 
equation. 

may write the reduced form of y2 as: 

Y2 + v2 

, we define: 

Y2 Y2 - !2 
21 + 

We 

(4.13) 

As with 

(4.14) 

and we obtain: 

(4.15) 

and 

(4.16) 

o 

0 

Hence, we may consider the elements of to be predetermined 
variables. Therefore, we have as predetermined variables the 
elements of 

(4.17) 
11, and 

So. let us define: 

(4.18) I to be the G -1 +K x 1 column vector of 

instrumental variables formed so that the predetermined 
variables appearing in the right -hand side of (4.9) come 
first, and the predetermined variables not appearing in 
(4.9) come last. 

Now, let us partition I so that 

(4.19) I 
( ) 

where 

(4.20) and I2 

Rewriting (4.9), we obtain: 

(4.21) 
(1 + (u9 + v18) 

Premultiplying (4.21.) by (4.19).-we have: 

(4.22) 
(12) Yg (I2) + (I2) + (I2) 

which may be written as: 

(4.23) 

Taking the expected value of (4.23), we have: 

(4.24) E (! 'g) E 
(Y)] + 

E (I2ug) + E 
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and this gives us: 

(4.25) E 

E 12;1) 

since E 

of and I2 

we get: 

(4.26) 

E 
0, by the fact that the elements 

are predetermined variables. Rewriting (4.25) 

E E 

which is a system of G -1 +K equations in H -1+J unknowns 
(unknown structural coefficients). 

Assume Equation (4.1) is correct. Thus, all G -1 +K equa- 
tions of (4 

`.26) 
are satisfied by the true population parameter 

vector , since all of these equations are consequences of 

(4.1). ver, G -1 +K > H -1 +J; that is, (4.26) has more equa- 
tions than unknown structural parameters. Therefore, there is a 
possibility of extracting additional information if we substitute 

the true vector 
(6) 

into system (4.26). Indeed, we might find 

necessary conditions for (4.1) to be correct. Yet, the true para- 

meter vector is unknown to us, by (3.4). Hence, in order 

to investigate t possibility of extracting such additional in- 
formation, we must find some way of obtaining the true parameter 

vector 
(X) 

from the information we have at hand. 

Since the true parameter vector 
(B) 

satisfies the entire 

system (4.26), it is a solution to any subsystem of (4.26). In 

particular, if we choose any subsystem of H -1 +J equations from 
(4.26), we get at least one solution (the true parameter vector). 
For various reasons, it is possible to extract a particular sub- 
system of H -1+J equations from (4.26) such that one of the solu- 
tions has as its expected value the true parameter vector and such 
that the matrix of coefficients (of this solution) is nonsingular; 
that is, invertible. Therefore, if we substitute this obtained 
solution into system (4.26), we should be able to extract the same 
(in an expectational sense) additional information as if we were 

to substitute the true parameter vector into (4.26). 

Now, let us examine this solution to (4.26) which has as its 

expected value the true parameter vector 

Let us partition (4.26) into two subsystems so that one sub- 
system is 

(4.27) 
(ÿ) ' 

a system of H -1+J equations in H -1 +J unknowns, and the other 
subsystem is 

(4.28) E(I2y9) E(I2y 
(ß) 

a system of G -H+K -J equations in H -1 +J unknowns. It is clear 
that this partitioning corresponds to the distinction initially 
made in (4.19) and (4.20) when we partitioned I. That is, sys- 
tem (4.27) is the system of equations derived from (4.9) by using 
as instruments those predetermined variables appearing in (4.9) 

(i.e., the elements of 
(Y 

) and system (4.28) is 

the system derived from (4.9) by using as instruments those pre- 
determined variables not appearing in (4.9) (i.e., the elements 

of 
!2' 

I2 ') 

-2 
If we solve (4.27) for (!y) , we obtain a solution which 

has as its expected value the true parameter vector Iizi) 

is a square matrix of order H -1 +J. By Assumption (3.4), 
exists. By the assumption that (4.1) is identi- 

fied, is nonsingular. Therefore, the inverse of 

exists. Hence, by Cramer's rule, we solve (4.27) E(I14 

for 
() 

and we get: 

(4.29) 
(I) 

a unique solution to the subsystem (4.27). 
To show that (4.29) has as its expected value the true 



parameter vector 

( 

) 
let us denote (4.29) by (Y) ". We de- 

fine the error of .29) to be the difference between (4.29) and 

the true parameter vector so that: 

(4.30) 

where is the error of ". Our task is to show that 

E(e) 
Substitution of (4.9) into (4.29) for y 

9 
yields: 

(4.31) ()" I1z1)] -1E {1[(4 + ug + 

(4.32) [E(I1y 

+ 

+ I1z1)]- 

(4.33) [E(Ily 

+ 1E(Ilug) 

[E(.1.14 I1z1)]- 

(I) + [E(I14 

+ 

(4.35) 
(I) 

+ 0 + 0; 

by Assumption (3.5) and Equations (3.13), (4.10), and (4.11). 

Hence E(e) 0. Therefore, E(I)" (x). 

Earlier we pointed out that, by substituting an appropriate 
solution into (4.26), we should be able to extract some additional 

information. Instead of substituting (î)" directly into (4.26), 

we will substitute it into another system, each of which can be 
derived from the other. 

Let us define 

(4.34) 

0 

oz 

(4.36) = 

K 

to be the G -1 +K x G -1 +K diagonal matrix of population standard 
deviations of the elements of I. We see that 

al 

(4.37) a 
a2 

where is the H -1+J x H -1 +J diagonal matrix of population 

standard deviations of the elements of I and 
-2 

is the cor- 

responding G -J x G -H+K -J matrix for the elements of I. Si- 

milarly, let a be the population standard deviation of y9. 

Since none of the diagonal elements of is zero (assuming 
none of our variables degenerates to a constant), is inverti- 
ble. Therefore, is also invertible as well al the scalar 

. Premultiplying system (4.26) by .2 postmultiplying by 

a-1, and noting that is the identity matrix, we have: 

1 (ß) 
1 

(4.38) 
a 

Since a diagonal matrix is symmetric, and since assume that 
all variables in (3.2) have zero means, and since the elements of 

and have zero means (since they are linear combinations 

of variables with zero means), (4.38) becomes: 
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(4.39) 
a91 

where 

(4.40) 
" 

p 
zJyg 

is the H -1 +J x 1 column vector of population correlation coeffi- 

cients between the elements of I1 and yg; 

(4.41) 

is the G -J 1 column vector of population correlation coef- 

ficients between the elements of I2 and y9; 

- 
-I p* (4.42) P 

is the H -1+J x H -1 matrix of population correlation coefficients 

between the elements of and the elements of y; similarly, 

(4.43) is the H -1+J x J matrix of population correla- 

tion coefficients between the elements of and z1; 

(4.44) is the G -H+K -J x H -1 matrix of population corre- 

lation coefficients between the elements of I2 and 

and 

(4.45) is the G -H+K -J matrix of population correlation 

coefficients between the elements of I2 and z1. 

System (4.39) is the above mentioned system into which we will 

substitute 

We will now examine the necessary and sufficient conditions 

for (4.1) to be correct. We have assumed (4.1) to be identified; 

it may be just identified (i.e., K -J H -1) or overidentified 

(i.e., K -J > H-1). If (4.1) is just identified, certain (neces- 

sary) conditions will hold. If (4.1) is overidentified, then we 

will extract a suitable amount of information such that . we can 

treat (4.1) to be just identified, on the basis of only this in- 

formation. We will then find necessary and sufficient conditions 

for the "left- over" information to hold. It is this latter case 

in which we are most interested. 

Case I. Assume (4.1) is just identified (i.e., K -J H -1). Let 

2 (4.46) = to be the G-Hxl column vector of 

coefficients of the elements of y2 (the endogeneous 

variables excluded from (4.1)) 



and 

2 
(4.47) to be the -J x 1 column vector of 

gK 

coefficients of the elements of z2 (the predetermined 

variables excluded from (4.1)). 

Furthermore, let 

(4.48) 

Let us also define 

(4.49) 

to be the G -H +K -J vector of partial correlation coefficients 
between the elements of I2 and y controlling for every ele- 

ment of Let us state the following theorem: 

Theorem 4.1: If Q 0, then P1 = 0. 

Essential to the proof of Theorem 4.1 is the following lemma about 
partial correlation coefficients. Let us state, without proof, 
this easily verified lemma. 

Lemma 4.1: 
12.34..k = 

if and only if P12 6231)13 + 624°14 

+ + B2kplk where = . 

Proof of Theorem 4.1: By the assumption that Q = 0, (4.1 is 

identified. Therefore, ()" exists. Substitution of 

into (4.39) for (6) yields a set of relations which, by 

4.1, implies.that = O. Q.E.D. 

We see that when (4.1) is just identified Q, since both 

and Y2 are equal to zero by the assumption that the elements 
of 

22 
and z2 are excluded from (4.1). Therefore, by Theorem 

4.1, for the just identified case, PI O. 

However, Theorem 4.1 does not really provide us with a test 
(i.e., necessary and sufficient conditions) of the correctness of 
the identifying restrictions on equation (4.1). We have merely 
provided a necessary condition for these restrictions to be cor- 
rect. This is not a sufficient condition for the correctness of 
these restrictions. Indeed if the restrictions on (4.1) were 
incorrect (i.e., if some elrnents of were nonzero), then (4.1) 

would be underidentified. Therefore, (e)" would not exist, 

since E(Ily would be singular and, hence, not invertible. 

Thus, using our method, we cannot deduce any sufficient conditions 
for the identifying restrictions to be correct in the just identi- 
fied case. 

Case II. Assume (4.1) is ovleridentified (i.e., K -J > H -1). 

have seen that our method cannot provide a test of the 
correctness of the a priori exclusion restrictions on (4.1) if 
(4.1) is just identified. However, if (4.1) is overidentified, 
then our method does provide a test for some of the a priori ex- 
clusion restrictions on (4.1) to be correct. If (4.1) is over - 
identified, then there exclusion restrictions on (4.1) 
than are needed to insure its identifiability. Therefore, if we 
choose a subset of these a priori exclusion restrictions -- just 
enough to guarantee the iáentifiability (4.1) -- and consider the 
restrictions contained in this subset to be untestable, then we 
may consider the remainder of the exclusion restrictions on (4.1) 
to be testable. That is, by Or method, we are able to find ne- 
cessary and sufficient conditions for the correctness of these 
overidentifying (extra) restrictions, given that chosen sub- 
set is assumed to be sufficient to identify (4.1). 

Let us assume that, for theoretical reasons, we feel that 
the restrictions contained in our chosen subset have a stronger 
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basis than the remainder of the restrictions on 14.1). Let us 

additionally assume that even if our test rejects the validity of 

all of the overidentifying restrictions on (4.1), the identifia- 

iity of all other equations in (3.2) is unaffected. Renumber- 

ing if necessary, we can order the variables excluded from (4.1) 

(i.e., the elements of y2 and z2) so that: 

(4.57) 

and 

(4.58) 

Y2 

z2 (zJ+1 

where the exclusion from (4.1) of the set of variables 
+l,....zK) suffices to-identify (4.1). The 

number of elements in this set is G- H' +K -J' = G -1 (since an 

equation in a linear system of G equations must exclude at 

least G -1 of the variables that appear in the entire system in 

order to be identified and exactly G -1 to be just identified). 

Let us assume that the exclusion of this set of variables is 

taken as unquestioned (for theoretical reasons). Let the exclu- 

sion of the set of variables from 

(4.1) be the overidentifying restrictions on (4.1). The number 

of elements in this set is H'- H+J' -J. Since the exclusion of 

the variables contained in the set 

suffices to identify that equation, the 'exclusion of the varia- 

bles of the set is a testable 

assumption. 
Now, partition y2 and z2 so that 

Y2 

) 

) 

(ZJs 

Corresponding to the distinction just made and recalling that 

I = 

(I 

let us partition I2 so that 
- -2 

(4.59) 

and 

(4.60) 

where 

where 

I1 

I3 

(4.61) 

I4 

where 

Likewise, we partition (4.39), so that: 

(4.62) 

and = (z2). 

( 
We can rearrange (4.62) into two subsystems so that one subsys- 

tem is: 

(4.63) 
1 

P2 

a system of H' -1+J' equations in H -1+J unknowns and the other 

subsystem is 



(4.64) 

I 

P-:-1 

( ) 
-2_1 -2 -1 

a system of G- H14K -J' equations in H -1 +J unknowns, where 
(4.63) is the subsystem of (4.62) which corresponds to those 
equations derived from (4.9) by using as instruments the prede- 
termined variables appearing in (4.9) (i.e., the elements of Il) 

and the predetermined variables which are elements of and 
- 

and where (4.64) is the subsystem of (4.62) which corresponds 

to those equations derived from (4.9) by using as instruments the 

predetermined variables of and I. Since the elements of 

and correspond to the set-of variables 
+1 

+1 
whose exclusion from (4.1) is taken as unques- 

tioned, we shall ignore (4.64) and concern ourselves only with 
(4.63). 

Define 

(4.65) 

to be a 

(4.66) 

is the 

Q 

H'- -J x 1 column vector, 

H' -H column vector 
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-2 

where 

8g 

of coefficients of the elements of 

y2 and 

+1 

(4.67) 
12 

is the J' -J xl column vector of coefficients of the 

Let 

(4.68) 

be the H'-H-11.11-J. 1 vector of partial correlation 

between the elements of and 
I2 

element of 

Consider the following theorem: 

Theorem 4.2: 

elements of 

coefficients 

controlling for every 

0 if and only if 

0. 

P2 

Proof: 
p 

Part I: If Q 0 then O. 

Proof of Part I: By assumption, Q = O. Therefore, 

and , which implies that the elements of and 

not appear in equation (4.1). Since (4.1) is identified, 

exists. Therefore, substituting (X)" into (4.63), we 

by Lemma 4.1, our result; 
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0 (or 

+1 < j < H' (or +1 

We now have k non -zero 

k > H+J. Therefore 

the elements of and 

(4.1) is identified and 

Part II: P2 

Proof of Part II: Assume Q 0; then either f 

both). Therefore there exists some j such that 

j 1J') and f 0 (or 0). 

parameters in equation (4.1), where 

has k rows. Since, by assumption, 

are excluded from (4.1), then 

of into (4.63) for yields 4n expression 

(or p ) which, by Lemma 4.1, implies that 

j9 

0. 

= 0, then Q0. 

or 

exists. Therefore substitution 

for 

p f (or f 0). 

Therefore, 

This is a contradiction to our hypothesis; therefore we must 
have Q = O. Q.E.D. 

C. Interpretation of Results 
By Definition (3.1), we can see why the results of Theorem 

4.2 can be interpreted to be a statistical test of the adequacy 
of causal theories represented in the general linear structural 
model. If we are willing to make certain untestable a priori 
assumptions, then, by our statistical results, we are able to 
determine whether or not certain other restrictions on the equa- 
tions of our model are correct. Since those restrictions which 

test are exclusion restrictions, we have by Definition (3.1), 
that they are, additionally, restrictions about causal relations. 

We have also accomplished our heuristic objective in deriv- 
ing a statistical test which reflects the logical process asso- 
ciated with introducing control variables into a zero-order cor- 
relational relationship and examining the partial correlations 
as a test for "spuriousness." Our results give us precisely 
which partial correlations (if any) ought to be equal to zero in 
any given causal situation (as we have defined such a situation). 

Furthermore, it should be easily seen that, as a consequence 
of Theorem (4.2), we can determine which one of the 

+ CK -1) + + = 2(K -1) possible causal mechan- 

Isms represented by (4.1) is the correct one, given the a priori 
just identifying restrictions on (4.1). We can do this observ- 
ing which set of partial correlational conditions holds, since it 
is obvious that only one set of these conditions holds for each 

one of the 2(K-1) possibilities. Also, since (3.2) is a system 

of G equations, we can determine which of the [2(K -1)]G pos- 

sible causal theories represented by (3,2) is correct, given the 
just identifying restrictions on all g, g = 1,...,G. 

While our test was developed only in an expectational sense, 
employing population parameters and expected values, we conjec- 
ture that our test can be approximated with information on sam- 
ples of data. In fact, there is a close relationship between 
much of the derivation of our test and the parameter estimating 
method of two -stage least squares (See Footnote 23). A good part 
of our thinking was inspired by this method. Combining such an 
estimating procedure with the use of sample statistics rather 
than the population parameters used in this piece, one should be 
able, at least in principle, to approximate our test on sample 
data. However, as mentioned earlier when we discussed Simon's 
test for the recursive -form, the possibility of violation of un- 
testable priori assumptions is a serious problem in empirical 
work and, therefore, any application of our test to sample data 
should be done with a good deal of caution. 

FOOTNOTES 

1For example, see the following works: Alker (1966); Cnudde 
and McCrone (1966); Forbes and Tufte (1968); and Goldberg (1966). 

2See Weld (1953), Wold (1960), and Strotz and Wold (1960), for 
discussion of the causal implications of the recursive -form. 



3Throughout this paperr, we shall use "causal relation" inter- 
changeably with "direct causal relation." 

4A good discussion of segmentable systems may be found in 
Christ (1966), pp. 61 -62. 

SSee Simon (1953), p. 18, for the exact statement of his 
definition. 

basic distinction between an endogeneous variable and a 
predetermined variable is the following: a predetermined variable 
is a variable which is independent of all disturbances in the mo- 
del at time t. All other,variables at time t are endogeneous 
variables. TFe distinction between these two types of variables 
will be made more explicit later in this paper. 

7The notion of identifiability is not essential for an under- 
standing of this section. We will discuss this notion in a later 
section. 

8We shall consider th identification problems associated 
with triangular systems in a later section. 

9See Simon (1954), p. 47. 

10See 
Lazarsfeld (195 ) 

11We 
will use "recursive -form" interchangeably with "segmen- 

table" in the following pages. 

Bentzel and Hansen (1954 -1955), pp. 153 -168, for a 
good discussion of the, problems associated with the use of the 
recursive -form for dealing with extended periods of time. Also 
see Samuelson (1965), pp. 139 -40. 

miller and Stokes ('963) initially desired to consider 
some reciprocal links in their model of constituency influence in 
Congress, but they never really carried out such an analysis. 
See Alker (1969) for a discussion of alternatives to the Miller 
and Stokes formulation. 

14For 
a somewhat different approach to the relationship be- 

tween time and causality see Fisher (1970). In this piece Fisher 
takes a different epistomological position than do we and admits 

a relationship between time and causality. Hi then exa- 
mines the implications of he stance that simultaneous equation 
models are limiting approx mations to nonsimultaneous ones as 
time lags go to zero. See also Granger (1969). 

15See 
Bunge (1963), pp. 188 -190 and J. Simon (1969), 

pp. 458 -460. 

paragraph is essentially a paraphrase of Fisher (1966), 
p. 92. 

an estimator is consistent if it converges in 

the probability limit to the "true" parameterbeing estimated. 
18See 

Christ (1966), O. 317, for a proof of this. 

19See Fisher (1966), P. 36-39, for a proof. 

data was genera ed by a program called DATSIM on the 
Berkeley Computer Center 6400. 

21We 
will include in this definition both variables which 

are independent of the disturbances at all times t (exogenous) 
and variables which are independent of the disturbances at a sin- 

gle time t (predetermined). 

any standard econometric text for discussion of the 
general linear structural Model. For example, Christ (1966) or 

Goldberger (1964). 
23This 

is esdentiallylthe two -stage least squares solution. 
See Christ (1966), pp. 43246; Goldberger (1964), pp. 329 -36, or 
Johnston (1963), pp. 258-60 for discussions of the method of two - 
stage least squares. 

24 
Christ (1966), pp. 539-40. 

*I wish to thank J. Merrill Shanks of the University of California, 
Berkeley and Hayward R. Jr. of the Massachusetts Institute 
of Technology for inspiration and helpful criticisms of an ear- 
lier draft of this paper. I also wish to thank Ruth Suzuki for 

her many hours on the type rnter. 
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